FEMA-CL: Fair Efficient Multi-Agent Course learning

نویسندگان

چکیده

Abstract Sociology shows that blindly pursuing the fairness of resource distribution will significantly reduce people’s enthusiasm for work, which is not conducive to increase total social material resources. Promoting system in stages, is, achieving on premise a certain basis, can only ensure efficiency accumulation, but also promote system. Therefore, inspired by above, we introduced multi-stage curriculum learning into fair policy multi-agent systems, and proposed novel Fair Effective Multi-Agent Curriculum Learning (FEMA-CL). The course progressively promotes large-scale systems through three stages: selfish stage, soft stage global stage. Our method easy learn efficiency, has carried out extensive experiments typical scenarios. Compared with current popular our superior performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Single-Agent to Multi-Agent Reinforcement Learning: Foundational Concepts and Methods Learning Theory Course

Interest in robotic and software agents has increased a lot in the last decades. They allow us to do tasks that we would hardly accomplish otherwise. Particularly, multi-agent systems motivate distributed solutions that can be cheaper and more efficient than centralized single-agent ones. In this context, reinforcement learning provides a way for agents to compute optimal ways of performing the...

متن کامل

Efficient multi-agent reinforcement learning through automated supervision

Multi-Agent Reinforcement Learning (MARL) algorithms suffer from slow convergence and even divergence, especially in large-scale systems. In this work, we develop a supervision framework to speed up the convergence of MARL algorithms in a network of agents. The framework defines an organizational structure for automated supervision and a communication protocol for exchanging information between...

متن کامل

Efficient Multi-Agent Reinforcement Learning through Automated Supervision (Short Paper)

Multi-Agent Reinforcement Learning (MARL) algorithms suffer from slow convergence and even divergence, especially in large-scale systems. In this work, we develop a supervision framework to speed up the convergence of MARL algorithms in a network of agents. The framework defines an organizational structure for automated supervision and a communication protocol for exchanging information between...

متن کامل

مدلسازی احساسات در سیستمهای multi-agent یادگیرنده

این پایان نامه به بررسی نقش مثبت یا منفی احساسات روی کارایی عامل های یادگیرنده در یک محیط multi-agent می پردازد. در این راستا مدلی برای عامل های یادگیرنده دارای احساس معرفی می شود. برای بررسی نقش احساسات، یک محیط فرضی multi-agent شبیه سازی شده و حالت های گوناگونی در آن نظر گرفته می شوند. در حالت نخست، کارایی عامل هایی بررسی می شود که دارای احساس نیستند و فقط قابلیت یادگیری دارند. در دومین حالت...

15 صفحه اول

Finding approximate competitive equilibria: efficient and fair course allocation

In the course allocation problem, a university administrator seeks to efficiently and fairly allocate schedules of over-demanded courses to students with heterogeneous preferences. We investigate how to computationally implement a recently-proposed theoretical solution to this problem (Budish, 2009) which uses approximate competitive equilibria to balance notions of efficiency, fairness, and in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2023

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2425/1/012007